Introduction

The emerging portable electronic devices and green electric vehicles (EVs) require a high energy density for the energy-storage system. Among all rechargeable batteries, lithium-ion batteries (LiBs) and beyond are displaying great potential in EVs.

Features of Al:
- Limited rate and cycling performance
- Low cost
- High electrical conductivity
- Low potential plateau

The challenge for aluminum is the severe pulverization during charging/discharging that limits the rate and cycling performance.

Obstacles and Challenges:

The volume change results in breaking/reforming of the SEI film on top of the active materials.

Our strategy

For the first time, a rationally designed yolk-shell configuration that is composed of aluminum nanoparticle as core and an titanium oxide as shell was synthesized.

Synthesis process

1. Original Al particles were immersed in the solution.
2. TiO₂ started to cover the surface of the Al particles.
3. Under acidic condition, both the removal of Al₂O₃ and the formation of TiO₂ shell happened at the same time.

Characterization

TEM and SEM images of Al@TiO₂ yolk-shell structure.

Conclusions

The battery with Al@TiO₂ yolk-shell structure displayed 10 C charge/discharge rate with a reversible capacity exceeding 650 mAh/g after 500 cycles, with a 3 mg/cm² loading. At 1 C, the capacity was ~1200 mAh/g after 500 cycles. The simple method shows great potentials in industrial productions and applications.

The Al particles with size of micrometers are being considered to replace nanoparticles for the Li-Al batteries with a further low cost.

Acknowledgments

This work was supported by the UWM Research Growth Initiative (RGI), and UWM start-up.

For further information

Prof. Junjie Niu,
Materials Science & Engineering Dept., CEAS
University of Wisconsin-Milwaukee

nju@uwm.edu
https://people.uwm.edu/niu/

Literature cited

A High-Performance Li-Al Battery For Electric Vehicles

Mingwei Shang, Yingying Lu, Junjie Niu*

Department of Materials Science & Engineering, UW-Milwaukee